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affected by the inclusion of new states, while the slope of τ1/2 is affected significantly more.
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1. Introduction

The present experimental knowledge on the values of the CKM parameters is firmly estab-

lished. The goal is to achieve highest possible accuracy in their experimental extraction.

In order to reach it in exclusive decay modes one has to gain maximal control over the

relevant form factors. In the case of precise determination of the Vcb CKM matrix elements

the studies of B meson decays into charm resonances have been playing a prominent role.

In experiments aimed to determine Vcb, actually the product |VcbF(1)| is extracted, where

F(1) is the B → D or B → D∗ hadronic form factor at zero recoil. A lack of precise

information about the shapes of various form factors is thus still the main source of un-

certainties. In theoretical studies, heavy quark symmetry has been particularly appealing

due to the reduction of six form factors in the case of B → D(D∗)lνl transitions to only

one [1, 2]. In addition, at zero recoil, when the final state meson is at rest in the B rest

frame, the normalization of the form factors is fixed by symmetry. However, the results

obtained within heavy meson effective theories obtain important corrections coming from

operators which are suppressed as 1/MB,D [3] as well as of higher order in the chiral ex-

pansion [4 – 7]. The knowledge of both kinds of corrections has improved during the last

few years. The B → D∗lνl decay amplitude is corrected by 1/MB,D only at the second

order in this expansion making it more appropriate for the experimental studies [6, 8]. In

addition to heavy meson effective theory, other approaches have been used in the study

of the B → D(D∗) form factors, such as quark models [9] and QCD sum rules [10], while

the most reliable results should be expected from lattice QCD [11]. In the treatment of

hadronic properties using lattice QCD the main problems arise due to the small masses of

the light quarks. Namely, lattice studies have to consider light quarks with larger masses

and then extrapolate results to their physical values. In these studies the chiral behav-

ior of the amplitudes is particularly important. Heavy meson chiral perturbation theory
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(HMχPT) is very useful in giving us some control over the uncertainties appearing when

the chiral limit is approached [12, 13]. Most recently in ref. [14], the authors have discussed

B → Dlνl and B → D∗lνl form factors in staggered chiral perturbation theory by including

next-to-leading order corrections in staggered chiral perturbation theory.

The practitioners of the heavy meson effective theories faced new tasks when the charm

mesons of the positive parity were discovered. In addition to understanding their structure,

mass differences and decay properties, the fact that observed resonances lie only about

350 MeV above negative parity states stimulated many studies [15 – 17]. The inclusion of

these states into the heavy meson effective theory was done fifteen years ago by including a

number of unknown parameters [4, 5, 7] into the HMχPT Lagrangian. Recently, in [12, 13]

the role of positive parity states in the B0
d,s − B̄0

d,s transitions and strong decays was

investigated and a few important statements were reached: the contributions coming from

positive parity states are competitive in size with the kaon and η meson loop corrections.

However, they do not alter the pion chiral logarithms and consequently they provide a

guideline for the lattice extrapolation of these results. A similar conclusion was already

hinted on long time ago in the case of B → D(∗) form factors [5], although a complete

analysis could not be performed at the time.

In this paper we reinvestigate chiral loop corrections within HMχPT to the semilep-

tonic transitions of B mesons into charm mesons of negative as well as positive parity.

Specifically we study the effects of the small mass splitting between positive and negative

parity heavy meson states on the leading non-analytic chiral behavior of the amplitudes.

In section 1 we give the main details of our framework. Section 3 contains calculation

of chiral loops while in section 4 we discuss chiral extrapolation. In section 5 we briefly

summarize our results.

2. Framework

We use the formalism of heavy meson chiral Lagrangians [18, 19]. The octet of light

pseudoscalar mesons can be encoded into Σ = ξ2 = exp(2iπiλi/f) where the πiλi matrix

contains the pseudo-Goldstone fields

πiλi =









1√
6
η + 1√

2
π0 π+ K+

π− 1√
6
η − 1√

2
π0 K0

K− K
0 −

√

2
3η









(2.1)

and f ≈ 120 MeV at one loop [20]. The heavy-light mesons are customarily cataloged

using the total angular momentum of the light degrees of freedom in the heavy meson

jP
ℓ which is a good quantum number in the heavy quark limit due to heavy quark spin

symmetry. The negative (jP
ℓ ) = 1/2− and positive (jP

ℓ ) = 1/2+ parity doublets can

then be respectively represented by the fields H(v) = 1/2(1 + γ · v)[P ∗
µ(v)γµ − P (v)γ5],

where P ∗
µ(v) and P (v) annihilate the vector and pseudoscalar mesons of velocity v, and

S(v) = 1/2(1 + γ · v)[P ∗
1µ(v)γµγ5 − P0(v)] for the axial-vector (P ∗

1µ(v)) and scalar (P0(v))

mesons.
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The strong interactions Lagrangian relevant for our study of chiral corrections to pro-

cesses among heavy mesons of velocity v is then at leading order in chiral and heavy quark

expansion

L = Lχ + L 1
2

− + L 1
2

+ + Lmix,

Lχ =
f2

8
∂µΣab∂

µΣ†
ba + λ0

[

(mq)abΣba + (mq)abΣ
†
ba

]

,

L 1
2

− = −Tr
[

Ha(v)(iv · Dab − δab∆H)Hb(v)
]

+ gTr
[

Hb(v)Ha(v)γ · Aabγ5

]

,

L 1
2

+ = Tr
[

Sa(v)(iv · Dab − δab∆S)Sb(v)
]

+ g̃Tr
[

Sb(v)Sa(v)γ · Aabγ5

]

,

Lmix = hTr
[

Hb(v)Sa(v)γ · Aabγ5

]

+ h.c.. (2.2)

Dµ
ab = δab∂

µ−Vµ
ab is the covariant heavy meson derivative. The light meson vector and axial

currents are defined as Vµ = 1/2(ξ†∂µξ + ξ∂µξ†) and Aµ = i/2(ξ†∂µξ − ξ∂µξ†) respectively.

A trace is taken over spin matrices and the repeated light quark flavor indices. The λ0

term induces masses of the pseudo-Goldstone mesons m2
ab = 4λ0(ma+mb)/f

2. Accordingly

Lχ is of the order O(p2) in the chiral power counting while the rest of this leading order

Lagrangian is of the order O(p1). Exceptions are the ∆H and ∆S residual masses of the H

and S fields respectively. In a theory with only H fields, one is free to define the velocity

v such that ∆H = 0 and all loop divergences are canceled by O(mq) counterterms at

zero order in 1/mH expansion. However, once S fields are added to the theory, another

dimensionful quantity ∆SH = ∆S − ∆H enters loop calculations and does not vanish in

the chiral and heavy quark limit [21]. We fix its value close to the phenomenological

mass splitting between the even and odd parity heavy meson multiplets ∆SH ≈ 400 MeV

although smaller values have also been proposed when taking into account next to leading

order terms in 1/mH expansion [21]. For the couplings g, h and g̃ we use the recently

estimated values of [13] g ≃ 0.6, h ≃ −0.5 and g̃ ≃ −0.1.

The weak part of the Lagrangian describing transitions among heavy quarks can be

matched upon weak heavy quark currents in HQET [5, 19]

cvΓbv′ → Ccb

{

− ξ(w)Tr
[

Ha(v)ΓHa(v
′)
]

(2.3)

−ξ̃(w)Tr
[

Sa(v)ΓSa(v
′)
]

− τ1/2(w)Tr
[

Ha(v)ΓSa(v
′)
]

+ h.c.

}

at leading order in chiral and heavy quark expansion and where Γ = γµ(1−γ5) and w = v·v′.
Note that heavy quark symmetry dictates the values of ξ(1) = ξ̃(1) = 1, which should not

receive any chiral corrections. On the other hand τ1/2(w) is not constrained and we use

the recently determined value of [22] τ1/2(1) = 0.38.

3. Calculation of chiral loop corrections

Here we present the most important details of our calculation of leading chiral loop cor-

rections to the Isgur-Wise functions ξ(w), ξ̃(w) and τ1/2(w). Following refs. [23, 24], we
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πi(q)

Ha(v) Ha(v)Hb(v)

Figure 1: Self-energy (”sunrise” topology) diagram. Double lines represent heavy mesons, dashed

lines represent pseudo-Goldstone bosons, while filled dots represent effective strong vertices.

πi(q)πi(q)πi(q)

Ha(v′) Ha(v′)Ha(v′) Hb(v) Hb(v)Hb(v) Hc(v
′)Hc(v

′) Hc(v)Hc(v)

Figure 2: Weak vertex correction diagrams. Crossed boxes represent effective weak vertices. Only

diagrams of the utmost left topology contribute to the amplitude at the leading chiral log order.

absorb the infinite and scale dependent pieces from one loop amplitudes into the appro-

priate counterterms at order O(mq) (see e.g. [13]). We first calculate the wave function

renormalization Z2H of the heavy H(v) = P (v), P ∗(v) and P0(v), P ∗
1 (v) fields. This has

been done e.g. in ref. [13] and we only quote the result at the O(p2) power counting order

(in appendix A). We get non-zero contributions to the heavy meson wavefunction renor-

malization from the self energy (”sunrise” topology) diagrams in figure 1 with leading order

couplings in the loop.

In the case of the P (v) mesons both vector P ∗(v) and scalar P0(v) mesons can con-

tribute in the loop. The positive parity P0(v) and P ∗
1 (v) similarly obtain wavefunction

renormalization contributions from self energy diagrams (figure 1) with P ∗
1 (v), P (v) and

P0(v), P ∗
1 (v), P ∗(v) mesons in the loops respectively. Then we calculate loop corrections

to the effective weak vertices. These come from the one loop diagram topologies shown in

figure 2.

Namely, the initial and final heavy states may exchange a pseudo-Goldstone, while

pairs of positive and negative parity heavy mesons may propagate in the loop (the left

diagram in figure 2). Again not all heavy states contribute due to parity conservation in

effective strong interaction vertices. Thus, when initial and final states are pseudoscalars

we get contributions from pairs of P ∗(v′)P ∗(v), P0(v
′)P ∗(v), P ∗(v′)P0(v) and P0(v

′)P0(v)

propagating in the loop, while for pseudoscalar initial and scalar final state we get contribu-

tions from pairs of P ∗(v′)P (v), P ∗(v′)P ∗
1 (v), P0(v

′)P (v) and P0(v
′)P ∗

1 (v) in the loop (due

to heavy quark symmetry, the same results are obtained for (axial)vector external states,

although different intermediate states contribute). On the other hand diagrams containing

pseudo-Goldstone emission or absorption from the weak vertex (central and right diagram

in figure 2) do not contribute at all at the leading order in the chiral power counting, since

they may only appear via new weak operators containing derivatives or mass operators of
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the pseudo-Goldstone fields. The complete expressions for the loop corrected ξ(ω), ξ̃(ω)

and τ1/2(ω) we obtain are rather lengthy and can be found in appendix A.

4. Chiral extrapolation

We study the contributions of the additional resonances in the chiral loops to the chiral

extrapolations employed by lattice QCD studies to run the light meson masses from the

large values used in the simulations to the chiral limit [25, 26]. In order to tame the chiral

behavior of the amplitudes containing the mass gap between the ground state and excited

heavy meson states ∆SH, we use the 1/∆SH expansion of the chiral loop integrals [13].

Namely when ∆SH is larger than the pion mass, we can expand the loop integrals and

obtain a series in mi/∆SH, where mi are the pseudo-Goldstone masses. Since this presents

an expansion around the decoupling limit — a theory with dynamical heavy meson states

of only single parity — where the loops containing opposite parity states are replaced

with effective vertexes, the resulting chiral logarithmic corrections contain no absorptive

parts originating from the parity splitting1. It turns out that actually all the zeroth order

contributions vanish in this expansion and the presence of the nearby opposite parity states

does not affect the leading pionic logarithmic behavior of the physical quantities. It does

however affect the kaon and η-meson loops because those states are heavier than ∆SH.

As argued in ref. [12] the 1/∆SH expansion works well in an SU(2) theory where kaons

and etas, whose masses would compete with the ∆SH splitting, do not propagate in the

loops. Therefore we write down explicit expressions for the chiral loop corrected Isgur-Wise

functions specifically for the strangeless states (a = u, d) in the SU(2) theory:

ξaa(w) = ξ(w)

{

1 +
3

32π2f2
m2

π log
m2

π

µ2

[

g22(r(w) − 1) (4.1)

−h2 m2
π

4∆2
SH

(

1 − w
ξ̃(w)

ξ(w)

)

− hg
m2

π

∆2
SH

w(w − 1)
τ1/2(w)

ξ(w)

]}

,

and

τ1/2aa(w) = τ1/2(w)

{

1 +
3

32π2f2
m2

π log
m2

π

µ2

[

− gg̃(2r(w) − 1) − 3

2
(g2 + g̃2)

+h2 m2
π

4∆2
SH

(w − 1) − hg
m2

π

2∆2
SH

ξ(w)

τ1/2(w)
w(1 + w) (4.2)

+hg̃
m2

π

2∆2
SH

ξ̃(w)

τ1/2(w)
w(1 + w)

]}

,

where

r(x) =
log(x +

√
x2 − 1)√

x2 − 1
, (4.3)

1Note that chiral corrections calculated in the full theory do contain absorptive parts as given in appendix

A, when functions Ci are specified.
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1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.975

0.98

0.985

0.99

0.995

1

rr

ξ′
(1

) 1
lo

o
p
/ξ

′ (
1)

tr
ee

ξ′
(1

) 1
lo

o
p
/ξ

′ (
1)

tr
ee

(1/2)− contributions

ξ′(1) − ξ̃′(1) = 1

ξ′(1) − ξ̃′(1) = −1

Figure 3: Chiral extrapolation of the slope of the IW function at w = 1 (ξ′(1)). Negative parity

heavy states’ contributions (black line) and a range of possible positive parity heavy states’ contri-

bution effects when the difference of slopes of ξ(1) and ξ̃(1) is varied between 1 (red dashed line)

and −1 (blue dash-dotted line).

so that r(1) = 1 and r′(1) = −1/3. The first lines of eqs. (4.1) and (4.2) contain the leading

contributions while the calculated 1/∆SH corrections are contained in the second lines. Note

that the positive parity heavy mesons contribute only at the 1/∆2
SH order in this expansion

since all the possible 1/∆SH contributions vanish in dimensional regularization and the

affected loop integral expressions have to be expanded up to the second order in 1/∆SH.

We then plot the chiral behavior of the Isgur-Wise function renormalization in the

chiral limit below the ∆SH scale in figures 3 and 4.

We have normalized the values of the extrapolated quantities at mπ ∼ ∆SH to 1

and perform the chiral extrapolation using the Gell-Mann - Okubo formulae as in [16]

m2
π = 8λ0msr/f

2 where r = mu,d/ms and 8λ0ms/f
2 = 2m2

K − m2
π = 0.468 GeV2. We

limit our extrapolation to the region mπ < ∆SH where the 1/∆SH expansion is valid in

a SU(2) theory. Presently no reliable estimates exist for the values of ξ̃′(1) and τ ′
1/2(1),

which feature in chiral extrapolation involving opposite parity heavy states. Therefore we

estimate their possible effects by varying their relative values in respect to ξ′(1) between

1 and −1 in our extrapolations. We see that the effects of positive parity states’ in the

chiral loops on the chiral extrapolation of ξ′(1) appear to be mild (around one percent

in our estimate) below the ∆SH scale (the gray shaded region around the leading order

result in black solid line). Actually if ξ′(1)− ξ̃′(1) is positive as reasoned in [5] and around

1, these leading 1/∆SH corrections almost vanish. The same general chiral behavior can

be attributed to ξ̃′(1) with the substitutions g ↔ g̃, ∆SH ↔ −∆SH and ξ′(1) ↔ ξ̃′(1).

Also, the chiral extrapolation (including small leading 1/∆SH contributions) of the τ1/2(1)

normalization appears fairly flat, indicating a linear extrapolation as a good approximation,

whereas the effects of chiral loops on the extrapolation of its slope τ ′
1/2(1) appear to be

sizable, up to 30% in our crude estimate.
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/
2

τ
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1

lo
o
p
)

1
/
2

/τ
(′

)(
tr

ee
)

1
/
2

τ
(1 loop)
1/2 /τ

(tree)
1/2

τ ′(1 loop)

1/2 /τ ′(tree)

1/2 (min)

τ ′(1 loop)

1/2 /τ ′(tree)

1/2 (max)

Figure 4: Chiral extrapolation of the τ1/2 function and its slope at w = 1. τ1/2(1) extrapolation

including 1/∆SH contributions (black solid line), and a range of possible extrapolation effects of

its slope — τ ′

1/2
(1) — (gray shaded region) when the difference of slopes ξ′(1), ξ̃′(1) and τ ′

1/2
(1) is

varied between 1 (red dashed line) and −1 (blue dash-dotted line).

5. Discussion and conclusion

Within a HMχPT framework, which includes even and odd parity heavy meson interac-

tions with light pseudoscalars as pseudo-Goldstone bosons, we have calculated chiral loop

corrections to the functions ξ and τ1/2. Motivated by the results of refs. [12, 13] where it

was shown that the leading pionic chiral logarithms are not changed by the inclusion of

even parity heavy meson states we consider chiral extrapolation of Isgur-Wise functions.

Our analysis confirms that the form of the leading pionic logarithmic corrections to the

Isgur-Wise functions is not changed by the inclusion opposite parity heavy mesons; they

only contribute at the m4 log m2 order as can be inferred by comparing eq. (4.1) with

eq. (8) of ref. [7]. Our results are particularly important for the lattice QCD extraction

of the form factors. The present errors on the Vcb parameter in the exclusive channels are

of the order few percent. This calls for careful control over theoretical uncertainties in

its extraction [27]. Our results on the chiral corrections are crucial in assuring validity of

the form factor extraction and error estimation coming from the lattice studies. We find

it especially important to stress that reliable chiral extrapolations can only be made in a

SU(2) limit with pion masses below the scale of ∆SH. Our estimates for the leading 1/∆SH

corrections also constrain the accuracy of such extrapolations. On the other hand any

ambiguities due to mπ dependence of the ∆SH itself only become relevant a the next order

in the chiral expansion. Note also that from our results given in appendix one can deduce

the chiral corrections in the Bs → Ds decays which are not approached by experiment.

Due to the strange quark flavor of final and initial heavy meson states, there is no leading

pion logarithmic corrections making the lattice extraction below the heavy meson parity

splitting gap ∆SH much simpler.
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In the 1/∆SH expansion the opposite parity contributions yield formally next-to-leading

chiral log order corrections in a theory with dynamical heavy meson fields of only single par-

ity. Therefore they compete with 1/Λχ corrections due to operators of higher chiral powers

within chiral loops (yielding contributions such as those of the central and right diagrams

in figure 2), where Λχ is the chiral symmetry breaking cut-off scale of the effective theory.

In a theory containing propagating heavy meson states of both parities, the inclusion of

such terms would in addition also yield 1/(Λχ∆SH) terms. Our present approach to the

estimation of the positive parity effects on the chiral extrapolation is therefore valid with

the assumption ∆SH < Λχ where these additional contributions are further suppressed.
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A. Complete expressions of 1-loop corrected Isgur-Wise functions

Below are the complete expressions of the chiral 1-loop corrected Isgur-Wise functions,

calculated as explained in the text. For the ξ(w) we get

ξab(w) = ξ(w)

{

δab +
1

2
δZ2Pa(v′) +

1

2
δZ2Pb(v) +

λi
acλ

i
cb

16π2f2
(A.1)

×
[

g2
(

(w + 2)C1(w,m, 0, 0) + (w2 − 1)C2(w,m, 0, 0)
)

−h2 ξ̃(w)

ξ(w)

( 4
∑

i=1

Ci(w,m,∆SH,∆SH)

+(w2 − w + 1)C2(w,m,∆SH,∆SH)

)

−2hg
τ1/2(w)

ξ(w)
(w − 1)

(

C1(w,m,∆SH, 0) + wC2(w,m,∆SH, 0)

+C4(w,m,∆SH, 0)
)

]}

,

where the same formulae can be applied to ξ̃(w) with the substitution g ↔ g̃ and ∆SH ↔

– 8 –
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−∆SH. For the τ1/2(w) on the other hand we obtain

τ1/2ab(w) = τ1/2(w)

{

δab +
1

2
δZ2Pa(v′) +

1

2
δZ2P0b(v) +

λi
acλ

i
cb

16π2f2
(A.2)

×
[

gg̃
(

(w − 2)C1(w,m, 0, 0) + (w2 − 1)C2(w,m, 0, 0)
)

−h2

(

w

4
∑

i=1

Ci(w,m,∆SH,−∆SH)

+(w2 − w + 1)C2(w,m,∆SH,−∆SH)

)

+hg(w + 1)
ξ(w)

τ1/2(w)

(

C1(w,m, 0,−∆SH)

+wC2(w,m, 0,−∆SH) + C3(w,m, 0,−∆SH)
)

−hg̃(w + 1)
ξ̃(w)

τ1/2(w)

(

C1(w,m,∆SH, 0)

+wC2(w,m,∆SH, 0) + C4(w,m,∆SH, 0)
)

]}

.

In the above expressions δZ2P = (Z2P − 1) are the chiral loop corrections to the heavy

meson wavefunction renormalization:

Z2Pa(v) = 1 − λi
abλ

i
ba

16π2f2

[

3g2C ′
1 (0,mi) − h2C ′

(

∆SH

mi
,mi

)]

, (A.3)

for the negative parity doublet and

Z2P0a(v) = 1 − λi
abλ

i
ba

16π2f2

[

3g̃2C ′
1 (0,mi) − h2C ′

(

−∆SH

mi
,mi

)]

, (A.4)

for the positive parity states. As in ref. [24], a trace is assumed over the inner repeated

index(es) (here b).

We make use of the Ci loop integral functions, of which Ci(x,m) have been defined in

ref. [13], while Ci(w,m,∆1,∆2) have been defined in [3]. The 1/∆ expansion of Ci(x,m)

has been demonstrated in ref. [13] while for Ci(w,m,∆1,∆2) it follows as

C1(w,m,∆, 0) = C1(w,m, 0,∆) → −(1/∆)C1(m, 0) − (1/∆2)C0(m)w + O(1/∆3),

C2(w,m,∆, 0) = C2(w,m, 0,∆) → −(1/∆2)C0(m) + O(1/∆3),

C3(w,m,∆, 0) = C4(w,m, 0,∆) → −(1/∆)C1(m, 0) + (2/∆2)C0(m)w + O(1/∆3),

C4(w,m,∆, 0), C3(w,m, 0,∆) → O(1/∆3),

C1(w,m,∆,∆) = −C1(w,m,∆,−∆) → (1/∆2)C0(m) + O(1/∆3),

C2(w,m,∆,∆), C2(w,m,∆,−∆) → O(1/∆3),

C3(w,m,∆,∆), C3(w,m,∆,−∆) → O(1/∆3),

C4(w,m,∆,∆), C4(w,m,∆,−∆) → O(1/∆3), (A.5)
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where

C0(m) = −1

4
m4 log

(

m2

µ2

)

. (A.6)
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